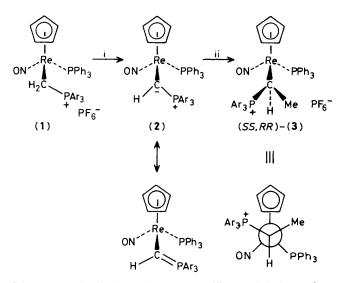
Reaction of the Ylide Complex $[(\eta^5-C_5H_5)Re(NO)(PPh_3)(CH_2P+Ar_3)]PF_6^-$ with n-Butyl-lithium–Tetramethylethylenediamine; Generation and Stereospecific Alkylation of a Transition Metal-substituted Wittig Reagent

Guy L. Crocco and J. A. Gladysz*

Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, U.S.A.

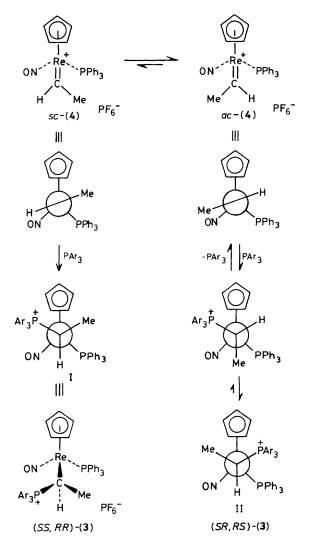

The title reaction (tetrahydrofuran, $-24 \,^{\circ}$ C, 2 h) gives [(η^{5} -C₅H₅)Re(NO)(PPh₃)(\overline{C} H–P+Ar₃)] (**2**; Ar = *p*-MeC₆H₄), which upon treatment with MeOSO₂CF₃ gives (*SS*,*RR*)-[(η^{5} -C₅H₅)Re(NO)(PPh₃){CH(Me)P+Ar₃}]PF₆⁻ [(*SS*,*RR*)-(**3**)] stereospecifically.

The chemistry of co-ordinatively saturated phosphorus ylide complexes, $L_nMCH_2P^+R_3$, has been extensively studied.¹ Surprisingly, there have been few attempts to deprotonate ylide complexes to give transition metal-substituted ylides, or 'organometallic Wittig reagents' [*e.g.* equation (1)].¹⁻³ Subsequent alkylation would give a new chiral centre, and in the case of a chiral L_nM moiety might occur with appreciable 1,2-asymmetric induction. In view of current interest in metal-mediated asymmetric synthesis, we sought to determine if chiral rhenium ylide complexes could be converted into rhenium-substituted ylides and stereospecifically alkylated.

$$L_n M-CH_2 P+R_3 + B:^- \longrightarrow \{L_n M-\overline{C}H-P+R_3 \\ \longleftrightarrow L_n M-CH=PR_3\} + BH \quad (1)$$

The previously reported⁴ ylide complex $[(\eta^{5-}C_{5}H_{5})-Re(NO)(PPh_{3})(CH_{2}P^{+}Ph_{3})]PF_{6}^{-}$ did not give well defined reactions with BuⁿLi-TMEDA⁺ in THF. We thought that this could be due to its poor THF solubility, so the more lipophilic complex $[(\eta^{5-}C_{5}H_{5})Re(NO)(PPh_{3})(CH_{2}P^{+}Ar_{3})]PF_{6}^{-}$ (1; Ar $= p-MeC_{6}H_{4})$ was synthesized from the methylidene complex⁴ $[(\eta^{5-}C_{5}H_{5})Re(NO)(PPh_{3})(=CH_{2})]^{+}PF_{6}^{-}$ and PAr₃ $[^{31}P n.m.r. (p.p.m., CDCl_{3}) 40.11 (d, J_{PP} 17.9 Hz, PAr_{3}) and 20.82 (d, J_{PP} 17.8 Hz, PPh_{3})].⁺ Complex (1) and$

[†] TMEDA = tetramethylethylenediamine; THF = tetrahydrofuran. N.m.r., i.r., mass spectral, and microanalytical data for (1) and (SS,RR)-(3) (G. L. Crocco, Ph.D. Thesis, University of Utah, 1986) were furnished to the referees.


Scheme 1. Synthesis and stereospecific methylation of a rhenium-substituted ylide. Ar = $p-MeC_6H_4$. Reagents: i, BuⁿLi, TMEDA, -24 °C, 2 h; ii, MeOSO₂CF₃, -78 °C.

BuⁿLi-TMEDA reacted during 2 h at -24 °C in THF to give the ylide $[(\eta^5-C_5H_5)Re(NO)(PPh_3)(CH-P^+Ar_3)]$ (2), as assayed by ³¹P n.m.r. spectroscopy [30.27 (d, J_{PP} 22.7 Hz, PAr₃) and 15.21 (d, J_{PP} 22.4 Hz, PPh₃)] and subsequent methylation (MeOSO₂CF₃, -78 °C) to give the ylide complex (SS,RR)-[($\eta^5-C_5H_5$)Re(NO)(PPh₃){CH(Me)P^+Ar_3}]PF₆-

[(SS,RR)-(3); Scheme 1]. Complex (SS,RR)-(3) was isolated in 83% yield after recrystallization.[†] Its gross structure followed from its spectroscopic properties [i.r. (cm⁻¹, KBr) $v_{N=0}$ 1667s, v_{P-F} 839s; ³¹P n.m.r. (p.p.m., CDCl₃) 43.04 (d, J_{PP} 17.0 Hz, PAr₃) and 19.72 (d, J_{PP} 16.9 Hz, PPh₃); ¹H n.m.r. (δ , CDCl₃) 4.79 (s, C₅H₅), 3.64 (dq. J_{HH} , J_{HP} 7.0 Hz, ReCH), and 1.46 (dd, J_{HH} 7.0, J_{HP} 21.4 Hz, CHMe)],[‡] and its stereochemistry was established by an independent synthesis (Scheme 2).

Authentic samples of (SS, RR)-(3), and the diastereoisomer (SR,RS)-(3), were prepared by PAr₃ attack upon the two Re=C geometric isomers of the ethylidene complex [$(\eta^5$ - C_5H_5)Re(NO)(PPh₃)(=CHMe)]+PF₆- (4).⁵ It has been established that nucleophilic additions to this and related⁶ alkylidene complexes occur preferentially from a direction anti to the bulky PPh₃ ligand, thus enabling rigorous assignments of product stereochemistry to be made. Reaction of PAr₃ with the less stable ethylidene Re=C isomer, sc-(4) (Scheme 2), gave (SS,RR)-(3) in quantitative spectroscopic yield $(<10 \text{ min}, -78 ^{\circ}\text{C}, \text{CD}_2\text{Cl}_2)$ and 90% isolated yield. Surprisingly, attempts to isolate (SR,RS)-(3) from the reaction of PAr₃ (2 equiv.) with the more stable ethylidene Re=C isomer, ac-(4), also gave (SS,RR)-(3). When this reaction was monitored by ³¹P and ¹H n.m.r. spectroscopy in CD₂Cl₂ at -78 °C, rapid (<10 min) formation of a complex with plausible features for (SR,RS)-(3) was observed [³¹P n.m.r. (p.p.m.) 39.29 (d, J_{PP} 15.8 Hz, PAr₃) and 21.63 (d, J_{PP} 16.3 Hz, PPh₃); ¹H n.m.r. (δ) 4.55 (s, C₅H₅), 3.46 (br. m, ReCH), and 1.52 (dd, J_{HH} 6.0, J_{HP} 21.6 Hz, CHMe)]. The reaction mixture was kept at room temperature for 2 days, after which time a (72 ± 2) : (28 ± 2) mixture of (SS,RR)-(3) and (SR,RS)-(3) was present. Hence, (SR,RS)-(3) is

 $^{13}C{^{1}H}$ N.m.r. data for (*SS*,*RR*)-(**3**) (δ , CDCl₃) 90.59 (s, C₅H₅), 23.54 (d, *J*_{CP} 1.7 Hz, CH*Me*), -12.75 (dd, *J*_{CP} 26.1, 1.9 Hz, ReCH). (*SR*,*RS*)-(**3**) is unstable except at -78 °C, so no ¹³C n.m.r. analysis was attempted.

Scheme 2. Independent syntheses and equilibration of the two diastereoisomers of (3). Ar = p-MeC₆H₄.

converted into the more stable (SS,RR)-(3), and would have been easily detected if present ($\geq 1\%$) at any stage in the above syntheses of (SS,RR)-(3).

Several aspects of the above results are noteworthy. First, we recently reported the deprotonation of the cyanomethyl complex $[(\eta^5-C_5H_5)Re(NO)(PPh_3)(CH_2CN)]$ to give the rhenium-substituted carbanion $Li^+(\eta^5-C_5H_5)$ -Re(NO)(PPh₃)(:CHCN)]⁻, and subsequent stereospecific methylation to give the cyanoethyl complex (SR,RS)-[(η^{5} - C_5H_5)Re(NO)(PPh₃){CH(Me)CN}].⁷ Interestingly, the ylide (2) is methylated in an opposite stereochemical sense, indicating that the factors controlling alkylation stereospecificity are different for anionic and neutral Re- C_{α} nucleophiles. Secondly, (SS,RR)-(3) and (SR,RS)-(3) are the first Re- C_{α} diastereoisomers that we have observed to equilibrate. From recent data of Seeman, Davies,8 Baird,9 and ourselves, ¹⁰ it is believed that the bulkiest C_{α} substituent prefers to reside between the NO and η^5 -C₅H₅ ligands, whereas the smallest C_{α} substituent prefers to reside between the NO and PPh₃ ligands (which subtend only a 90° angle). If the preferred Re– C_{α} rotamers of both diastereoisomers of (3) have H_{α} between the NO and PPh₃ ligands, then (SR,RS)-(3) will have a bulky PAr₃ substituent residing between the large PPh₃ and η^5 -C₅H₅ ligands (II, Scheme 2), whereas (SS,RR)-(3) will have a smaller Me substituent in the analogous location (I, Scheme 2). This accounts for the observed order of stability. We propose that this stability order will be general for diastereoisomeric [($\eta^{5-}C_{5}H_{5}$)M(L)(PPh₃)(CRR'R")] complexes (L = NO or CO) with three sterically differentiated C_{α} substituents. Finally, Scheme 1 provides explicit precedent for previously proposed but unobservable C_{α} deprotonations of ylide complexes.¹⁻³

We thank the N.I.H. for support of this research. N.m.r. spectrometers were provided by N.S.F. and D.O.D. instrument grants.

Received, 21st April 1986; Com. 535

References

1 H. Schmidbaur, Angew. Chem., Int. Ed. Engl., 1983, 22, 907; W. C. Kaska, Coord. Chem. Rev., 1983, 48, 1; L. Weber in 'The Chemistry of the Metal-Carbon Bond,' eds. H. R. Hartley and S. Patai, vol. 1, Wiley, New York, 1982, ch 3.

- 2 S. Voran and W. Malisch, Angew. Chem., Int. Ed. Engl., 1983, 22, 151.
- 3 For other syntheses of complexes containing CHPR₃ ligands, see ref. 1 and citations in R. E. Cramer, R. B. Maynard, J. C. Paw, and J. W. Gilje, *Organometallics*, 1983, 2, 1336. Some syntheses likely involve deprotonation of intermediate ylide complexes. Note that for co-ordinatively unsaturated L_nM , $L_n\overline{M}=C-P^+Ar_3$ resonance forms are possible.
- 4 W. Tam, G.-Y. Lin, W.-K. Wong, W. A. Kiel, V. K. Wong, and J. A. Gladysz, J. Am. Chem. Soc., 1982, 104, 141.
- 5 W. A. Kiel, G.-Y. Lin, G. S. Bodner, and J. A. Gladysz, J. Am. Chem. Soc., 1983, 105, 4958.
- 6 W. A. Kiel, G.-Y. Lin, A. G. Constable, F. B. McCormick, C. E. Strouse, O. Eisenstein, and J. A. Gladysz, J. Am. Chem. Soc., 1982, 104, 4865.
- 7 G. L. Crocco and J. A. Gladysz, J. Am. Chem. Soc., 1985, 107, 4103.
- 8 J. I. Seeman and S. G. Davies, J. Am. Chem. Soc., 1985, 107, 8522.
- 9 B. K. Hunter and M. C. Baird, Organometallics, 1985, 4, 1481.
- 10 S. Georgiou and J. A. Gladysz, Tetrahedron, 1986, 42, 1109.